The fourth transmembrane domain of the Helicobacter pylori Na+/H+ antiporter NhaA faces a water-filled channel required for ion transport.

نویسندگان

  • Naoyuki Kuwabara
  • Hiroki Inoue
  • Yumi Tsuboi
  • Norihiro Nakamura
  • Hiroshi Kanazawa
چکیده

Cysteine-scanning mutagenesis was performed from Ser-130 to Leu-160 in the fourth transmembrane domain (TM4) of the Na+/H+ antiporter NhaA from Helicobacter pylori to determine the topology of each residue and to identify functionally important residues. All of the mutants were based on cysteine-less NhaA (Cys-less NhaA), which functions very similarly to the wild-type protein, and were expressed at a level similar to Cys-less NhaA. Discontinuity of [14C]N-ethylmaleimide (NEM)-reactive residues suggested that TM4 comprises residues Gly-135 to Val-156. Even within TM4, NEM reactivity was high for I136C, D141C to A143C, L146C, M150C, and G153C to R155C. These residues are thought to be located on one side of the -helical structure of TM4 and to face a putative water-filled channel. Pretreatment of intact cells with membrane-impermeable maleimide did not inhibit [14C]NEM binding to the NEM-reactive residues within TM4, suggesting that the putative channel opens toward the cytoplasm. NEM reactivity of the A143C mutant was significantly inhibited by Li+. The T140C and D141C mutants showed lower affinity for Na+ and Li+ as transport substrates, but their maximal antiporter velocities (Vmax) were relatively unaffected. Whereas the I142C and F144C mutants completely lost their Li+/H+ antiporter activity, I142C had a lower Vmax for the Na+/H+ antiporter. F144C exhibited a markedly lower Vmax and a partially reduced affinity for Na+. These results suggest that Thr-140, Asp-141, and Phe-144 are located in the end portion of a putative water-filled channel and may provide the binding site for Na+, Li+, and/or H+. Furthermore, residues Ile-142 to Phe-144 may be important for the conformational change that accompanies ion transport in NhaA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intermolecular cross-linking of monomers in Helicobacter pylori Na+/H+ antiporter NhaA at the dimer interface inhibits antiporter activity.

We have previously shown that HPNhaA (Helicobacter pylori Na+/H+ antiporter) forms an oligomer in a native membrane of Escherichia coli, and conformational changes of oligomer occur between monomers of the oligomer during ion transport. In the present study, we use Blue-native PAGE to show that HPNhaA forms a dimer. Cysteine-scanning mutagenesis of residues 55-61 in a putative beta-sheet region...

متن کامل

NhaA crystal structure: functional-structural insights.

Na(+)/H(+) antiporters are integral membrane proteins that exchange Na(+) for H(+) across the cytoplasmic membrane and many intracellular membranes. They are essential for Na(+), pH and volume homeostasis, which are crucial processes for cell viability. Accordingly, antiporters are important drug targets in humans and underlie salt-resistance in plants. Many Na(+)/H(+) antiporters are tightly r...

متن کامل

Species differences in bacterial NhaA Na+/H+ exchangers.

Bacteria have adapted their NhaA Na(+)/H(+) exchangers responsible for salt homeostasis to their different habitats. We present an electrophysiological and kinetic analysis of NhaA from Helicobacter pylori and compare it to the previously investigated exchangers from Escherichia coli and Salmonella typhimurium. Properties of all three transporters are described by a simple model using a single ...

متن کامل

Structural and functional analysis of the Na+/H+ exchanger.

The mammalian NHE (Na+/H+ exchanger) is a ubiquitously expressed integral membrane protein that regulates intracellular pH by removing a proton in exchange for an extracellular sodium ion. Of the nine known isoforms of the mammalian NHEs, the first isoform discovered (NHE1) is the most thoroughly characterized. NHE1 is involved in numerous physiological processes in mammals, including regulatio...

متن کامل

Lysine 300 is essential for stability but not for electrogenic transport of the Escherichia coli NhaA Na+/H+ antiporter

Na+/H+ antiporters are located in the cytoplasmic and intracellular membranes and play crucial roles in regulating intracellular pH, Na+, and volume. The NhaA antiporter of Escherichia coli is the best studied member of the Na+/H+ exchanger family and a model system for all related Na+/H+ exchangers, including eukaryotic representatives. Several amino acid residues are important for the transpo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 39  شماره 

صفحات  -

تاریخ انتشار 2004